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ABSTRACT 
 
The present work describes an experimental investigation of 
the decay of the wind tunnel turbulence generated by space 
filling fractal square grids by means of stereoscopic Particle 
Image Velocimetry (PIV). PIV is severely challenged by 
measurements of power spectra and measurements of low 
turbulence intensity flow, and this application involves both. 
Good statistics require averages over large numbers of frames, 
and the authors discuss the statistical convergence. Among the 
quantities to be analysed from the obtained velocity fields are 
the longitudinal integral length scale, Taylor micro-scale, 
streamwise two-point correlation functions, and energy 
spectra. 
 
1. INTRODUCTION 
 
Multi-scale generated turbulence has unusual properties that 
may lead to exciting new insights into turbulence theory as 
well as important new industrial applications. The study of 
turbulence generated by fractal elements is motivated by the 
dissipation anomaly (i.e. the independence of the turbulent 
kinetic dissipation rate on Reynolds number at high Re), 
which lies at the root of Kolmogorov’s theory. When 
turbulence is generated by injecting energy over a range of 
length scales, as by a fractal grid, the spectral energy transfer 
mechanism can be investigated by adjusting the geometry of 
the fractal grid [1]. 
Hurst and Vassilicos [2] found that space-filling fractal square 
grids gave the most interesting results, showing an increase of 
the turbulence intensity until a downstream location xpeak, and 
a subsequent exponential decay, as opposed to the well-known 
power law decay of classical square grids [3-4]. During the 
exponential decay, they found that the ratio of the longitudinal 
integral length scale L11 to the Taylor microscale λ is nearly 
constant. Furthermore, Seoud and Vassilicos [5] observed that 
fractal square grids can generate turbulence of about three 
times higher Reynolds number Reλ than turbulence generated 
by classical grids, and comparable to turbulence generated by 
jet grids [6] and active grids [7] with the same flow speed and 
significantly lower blockage ratio.  
All measurements to date have been made using the hot-wire 
anemometer. The measurement of power spectra and 
turbulence statistics is, in low turbulence intensity flow, a 
challenge for PIV. However, up-to-date cameras allow high 
spatial resolution, enabling the possibility to extract turbulence 
statistics from the flow field. In the present work we present a 
Stereo PIV investigation of fractal/multiscale-generated 
turbulence. In Sec. 2 the geometry of the adopted space-filling 
fractal grids is presented; in Sec. 3 the experimental setup, and 

the test procedure are described. In Sec. 4 the statistical 
convergence is discussed and the results are shown. 
 
2. SPACE-FILLING FRACTAL GRIDS 
 
The fractal grids consist of the repetition of a specific pattern 
at different scales (see figure 1). In the present work we use a 
square pattern, which consists of four bars. The length and the 
thickness of each bar at the j-th iteration are indicated with the 
symbols Lj and tj, respectively. The grids are space filling, i.e. 
their fractal dimension Df is equal to 2 (the definition of Dfcan 
be found in [2]). At the j-th iteration there are four times more 
patterns of the (j-1)-th iteration, while the length and the 
thickness are reduced by the scaling factors RL and Rt. 
 

 

Figure 1. Example of space-filling multiscale/fractal grid 
with square generating pattern.   

 
Three fractal grids have been used, with different thickness 
ratios (i.e. the ratio between of the largest to the smallest bar 
thicknesses) tr (8.5, 13 and 17, respectively) and only slightly 
different average blockage ratio σ and effective mesh-length 
Meff, calculated as in [2]. The complete details about the 
geometry of the grids are reported in Table 1. 
 

 
Table 1. Fractal grid parameters 

 
3. EXPERIMENTAL SETUP  
 
The grids are tested in a low turbulence level open circuit 
wind tunnel, with a L=1,524mm long and T=152.4mm wide 
square test section. The fractal grid is placed at the inlet of the 
test section, immediately after the contraction. The residual 

tr RL Rt σ Meff [mm]
8.5 0.5 0.490 0.25 15.78
13 0.5 0.425 0.32 15.17
17 0.5 0.389 0.37 14.62



 

 

level of turbulence in absence of the grid is lower than 0.5% 
along the centerline of the wind tunnel. 
number, based on
contraction without the grids,
the fractal grid, ranges between 8
on the fractal grid).
Seeding, in the form of oil droplets of diameter of 
approximately 1µm, is injected 
It is illuminated by a laser light sheet, generated by double
cavity Nd-YAG laser, with a thickness of about 0.5
pulse duration of 8
maximum energy per pulse of 100
The experiments are carried out with an angular
stereoscopic PIV configuration, with cameras placed at +40°, 
40°. TSI POWERVIEW™ Plus 11MP 
pixels), equipped w
60mm, are employed to record images with about 22 
pixels/mm resolution
satisfied to obtain 
A grid of dots, with diameter of 0.5
has been generated to perform the optical calibration of the 
system. A translation stage move
the z direction (where the 
streamwise and crosswise directions in the light sheet plane, 
and the z axis completes the three dimensional orthogonal 
reference system pointing towards the cameras) with an 
accuracy of 13
order in x, y, and 
between world and image coordi
correction between the laser sheet and the 
performed as proposed by Wieneke [9]. The so called 
disparity map is computed on 50 samples, and then averaged 
to suppress the effect of noise.
The imaging system is placed in 
order to investigate the characteristics of the evolution of the 
generated structures throughout their decay history, and to 
assess the sensitivity of the measurement setup in detecting the 
level of turbulence intensity. The 
displacement fields are obtained by interrogating the two 
warped images with a standard homebuilt multi
software with window
the three-component (3C) displacement field is computed by a 
procedure including both dewarping and 3C reconstruction, as 
proposed by Soloff et al. [11]. The final dimension of the 
interrogation spot is 16
50% overlap. The results are averaged over
 
4. RESULTS
 
4.1 Instantaneous velocity fields
In this section some features of the instantaneous velocity field 
are briefly illustrated. The flow is characterized by a range of 
length scales and structures. In figure 2 (top) an example of 
instantaneous distribution of the 
is illustrated. The flow field is smoothed by a Gaussian 
filtering window, with a 3 x 3 kernel and a standard deviation 
equal to 1.  
A magnified illustration of the highlighted zone is presented in 
figure 2, bottom. The vector r
velocity field is also reported. The turbulent structures 
composed of scales of the order of the Taylor micro
the motion are satisfactorily resolved. 
calculated as described in Sec. 4.4, is 
i.e. about 3.7 times the linear dimension of the interrogation 
spot. 
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4.2 Statistical convergence
Reliable evaluation of the turbulence statistics requires 
averaging over a sufficient number of frames. In this section, 
we discuss the statistical convergence of the results, 
considering the experiment with the
at the first tested streamwise location. The history of 
convergence is reported 
the mean squared fluctuations at the location in the centre of 
the image. The results are normalized by 
corresponding value averaged over the total number of 
realizations, where
quantity f averaged over 
The results show fast convergence of the streamwise velocity 
(the average va
realizations), while the noise effect is much stronger on the 
mean squared fluctuation (more than 400 samples are needed 
to reduce the variation below 3%).
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the other hand, the effect of noise makes it difficult to fit the 
decay to understand whether it is exp
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component is consistently higher than that of the crosswise 
velocity component. This effect is due to sensitivity of the 
stereoscopic reconstruction algorithm in evaluating the out
plane displacement, since, for symmetry arguments, the true 
mean square out
nearly equal to the mean square cross
fluctuation. 

Figure 4. Average streamwise velocity field for the grid 
tr=8.5, in m/s
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Figure 7. Longitudinal auto-correlation function for three 
thickness ratios at the first streamwise location. 
 
The energy spectrum at the three tested streamwise locations 
for the fractal grid with tr=8.5 are reported in figure 8. As 
observed by Seoud and Vassilicos [5], quite surprisingly, even 
in absence of the dissipation anomaly, the 1D longitudinal 
energy spectrum is proportional to k-5/3, where k is the wave 
number, in the decay region, i.e. beyond the peak of 
turbulence intensity. The increase of the magnitude of the 
energy spectra at high wavenumbers are due to the 
significance of random measurement error at these smallest 
resolved displacements. 
 

 
Figure 8. 1D energy spectra (compensated, in the lower 
figure), fractal grid with tr=8.5, for three streamwise 
location. 

 
5. CONCLUSIONS 
 
A Stereo-PIV study of the decay of multi-scale/fractal 
generated turbulence has been presented. This kind of 
investigation, involving calculation of turbulence statistics, 
such as energy spectra and average squared turbulent 

fluctuations, at the state of art is particularly challenging for 
PIV. In the present paper a preliminary performance 
assessment highlights that Stereo-PIV is capable of detecting 
the decay of the streamwise and crosswise velocity 
fluctuations in the light sheet plane, and the anisotropy of the 
flow field, while the out-of-plane fluctuation is affected by the 
reconstruction noise. Unfortunately, the detected decay of the 
in-plane velocity fluctuations is also strongly affected by 
noise, therefore a fitting to confirm the exponential decay 
observed by Hurst and Vassilicos [2] is not trivial to be 
performed. 
Energy spectra are also presented, showing that the larger 
scales of the flow field are well resolved, but the smallest 
resolvable scales are of the order of the Taylor micro-scale. 
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